Sunday , January 20 2019
Home / illumenation / Psychology / Sexual Psychologhy / Gene- and Environment-Dependent Neuroendocrine Etiogenesis of Homosexuality and Transsexualism

Gene- and Environment-Dependent Neuroendocrine Etiogenesis of Homosexuality and Transsexualism

Summary

Sexual brain organization is dependent on sex hormone and neurotransmitter levels occurring during critical developmental periods. The higher the androgen levels during brain organization, caused by genetic and/or environmental factors, the higher is the biological predisposition to bi- and homosexuality or even transsexualism in females and the lower it is in males. Adrenal androgen excess, leading to heterotypical sexual orientation and/or gender role behavior in genetic females, can be caused by 21-hydroxylase deficiency, especially when associated with prenatal stress. The cortisol (F) precursor 21-deoxycortisol (21-DOF) was found to be significantly increased after ACTH stimulation in homosexual as compared to heterosexual females. 21-DOF was increased significantly before and even highly significantly after ACTH stimulation in female-to-male transsexuals. In view of these data, heterozygous and homozygous forms, respectively, of 21-hydroxylase deficiency represent a genetic predisposition to androgen-dependent development of homosexuality and transsexualism in females. Testicular androgen deficiency in prenatal life, giving rise to heterotypical sexual orientation and/or gender role behavior in genetic males, may be induced by prenatal stress and/or maternal or fetal genetic alterations. Most recently, in mothers of homosexual men — following ACTH stimulation — a significantly increased prevalence of high 21-DOF plasma values and 21-DOF/F ratios was found, which surpassed the mean + 1 SD level of heterosexual control women. In homosexual men as well – following ACTH stimulation – most of the 21-DOF plasma values and 21-DOF/F ratios also surpassed the mean + 1 SD level of heterosexual men. In only one out of 9 homosexual males, neither in his blood nor in that of his mother increased 21-DOF values and 21-DOF/F ratios were found after ACTH stimulation. In this homosexual man, however, the plasma de-hydroepiandrosterone sulfate (DHEA-S) values and the DHEA-S/1000 × A (A = androstenedione) ratio were increased before and after ACTH stimulation. Furthermore, highly significantly increased basal plasma levels of dehydroepiandrosterone sulfate were found in male-to-female transsexuals as compared to normal males, suggesting partial 3β-ol hydroxysteroid dehydrogen-ase deficiency to be a predisposing factor for the development of male-to-female transsexualism.

Article source link:

https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0029-1211110